Show simple item record

dc.contributor.authorPetrovski, Andrei
dc.contributor.authorRattadilok, Prapa
dc.contributor.authorPetrovski, Sergei
dc.date.accessioned2017-06-06T09:13:06Z
dc.date.available2017-06-06T09:13:06Z
dc.date.issued2016-08-19en
dc.identifier.citationPETROVSKI, A., RATTADILOK, P. and PETROVSKII, S. 2016. Intelligent measurement in unmanned aerial cyber physical systems for traffic surveillance. In Jayne, C. and Iliadis, L. (eds.) Communications in computer and information science, 629. Engineering applications of neural networks: proceedings of the 17th International conference on engineering applications of neural networks (EANN 2016), 2 - 5 September 2016, Aberdeen, UK. Cham: Springer [online], pages 161-175. Available from: https://doi.org/10.1007/978-3-319-44188-7_12en
dc.identifier.isbn9783319441870en
dc.identifier.isbn9783319441887en
dc.identifier.issn1865-0929en
dc.identifier.issn1865-0937en
dc.identifier.urihttp://hdl.handle.net/10059/2360
dc.description.abstractAn adaptive framework for building intelligent measurement systems has been proposed in the paper and tested on simulated traffic surveillance data. The use of the framework enables making intelligent decisions related to the presence of anomalies in the surveillance data with the help of statistical analysis, computational intelligent and machine learning. Computational intelligence can also be effectively utilised for identifying the main contributing features in detecting anomalous data points within the surveillance data. The experimental results have demonstrated that a reasonable performance is achieved in terms of inferential accuracy and data processing speed.en
dc.language.isoengen
dc.publisherSpringeren
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0en
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectIntelligent measurementen
dc.subjectTraffic surveillanceen
dc.subjectData anomaliesen
dc.subjectComputational intelligenceen
dc.subjectArtificial neural networksen
dc.subjectCyber physical systemen
dc.titleIntelligent measurement in unmanned aerial cyber physical systems for traffic surveillance.en
dc.typeConference publicationsen
dc.publisher.urihttps://doi.org/10.1007/978-3-319-44188-7_12en
dcterms.dateAccepted2016-06-05en
dcterms.publicationdate2016-09-30en
refterms.accessExceptionNAen
refterms.dateDeposit2017-06-06en
refterms.dateFCA2017-06-06en
refterms.dateFCD2017-06-06en
refterms.dateFreeToDownload2017-06-06en
refterms.dateFreeToRead2017-06-06en
refterms.dateToSearch2017-06-06en
refterms.depositExceptionNAen
refterms.panelBen
refterms.technicalExceptionNAen
refterms.versionAMen
rioxxterms.publicationdate2016-08-19en
rioxxterms.typeConference Paper/Proceeding/Abstracten
rioxxterms.versionAMen


Files in this item

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc/4.0