Show simple item record

dc.contributor.authorYan, Yao
dc.contributor.authorLiu, Yang
dc.contributor.authorJiang, Haibo
dc.contributor.authorPeng, Zhike
dc.contributor.authorCrawford, Alasdair R.
dc.contributor.authorWilliamson, James
dc.contributor.authorKerins, Gearoid
dc.contributor.authorYusupov, Azat
dc.contributor.authorIslam, Sheikh Zahidul
dc.contributor.authorThomson, Jamie
dc.date.accessioned2018-11-01T16:43:35Z
dc.date.available2018-11-01T16:43:35Z
dc.date.issued2018-05-03en
dc.identifier.citationYAN, Y., LIU, Y., JIANG, H., PENG, Z., CRAWFORD, A., WILLIAMSON, J., THOMSON, J., KERINS, G., YUSUPOV, A. and ISLAM, S. 2018. Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline. Proceedings of the Institution of Mechanical Engineers, part C: journal of mechanical engineering science [online], Online First. Available from: https://doi.org/10.1177/0954406218766200en
dc.identifier.issn0954-4062en
dc.identifier.issn2041-2983en
dc.identifier.urihttp://hdl.handle.net/10059/3205
dc.description.abstractThis paper studies the prototype development of the vibro-impact capsule system aiming for autonomous mobile sensing for pipeline inspection. Self-propelled progression of the system is obtained by employing a vibro-impact oscillator encapsuled in the capsule without the requirement of any external mechanisms, such as wheels, arms, or legs. A dummy capsule prototype is designed, and the best geometric parameters, capsule and cap arc lengths, for minimizing fluid resistance forces are obtained through two-dimensional and three-dimensional computational fluid dynamics analyses, which are confirmed by wind tunnel tests. In order to verify the concept of self-propulsion, both original and optimized capsule prototypes are tested in a fluid pipe. Experimental results are compared with computational fluid dynamics simulations to confirm the efficacy of the vibro-impact self-propelled driving.en
dc.description.sponsorshipRobert Gordon University ; Agri-Tech, Pathfinder Awards, China ; Newton NetworkÞ (Grant No.PF002) ; National Natural Science Foundation of China (Grant Nos. 11502048, 11572224, 11672257, 11402224, 11401543 and 11632011) ; Fundamental Research Funds for the Central Universities (Grant No. ZYGX2015KYQD033) ; EPSRC (Grant No. EP/P023983/1).en
dc.language.isoengen
dc.publisherSageen
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectVibro-impacten
dc.subjectSelf-propulsionen
dc.subjectCapsuleen
dc.subjectComputational fluid dynamicsen
dc.subjectPipeline inspectionen
dc.titleOptimization and experimental verification of the vibro-impact capsule system in fluid pipeline.en
dc.typeJournal articlesen
dc.publisher.urihttps://doi.org/10.1177/0954406218766200en
dcterms.dateAccepted2018-02-27en
refterms.accessExceptionNAen
refterms.dateDeposit2018-11-01en
refterms.dateFCA2018-05-03en
refterms.dateFCD2018-11-01en
refterms.dateFreeToDownload2018-05-03en
refterms.dateFreeToRead2018-05-03en
refterms.dateToSearch2018-05-03en
refterms.depositExceptionpublishedGoldOAen
refterms.panelBen
refterms.technicalExceptionNAen
refterms.versionVoRen
rioxxterms.publicationdate2018-05-03en
rioxxterms.typeJournal Article/Reviewen
rioxxterms.versionVoRen


Files in this item

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0