Show simple item record

dc.contributor.authorForbes, Glenn
dc.contributor.authorMassie, Stewart
dc.contributor.authorCraw, Susan
dc.date.accessioned2019-02-18T12:20:10Z
dc.date.available2019-02-18T12:20:10Z
dc.identifier.citationFORBES, G., MASSIE, S. and CRAW, S. [2019]. Fall prediction using behavioural modelling from sensor data in smart homes. Artificial intelligence review [online], (accepted). Available from: https://doi.org/10.1007/s10462-019-09687-7en
dc.identifier.issn0269-2821en
dc.identifier.issn1573-7462en
dc.identifier.urihttp://hdl.handle.net/10059/3300
dc.description.abstractThe number of methods for identifying potential fall risk is growing as the rate of elderly fallers continues to rise in the UK. Assessments for identifying risk of falling are usually performed in hospitals and other laboratory environments, however these are costly and cause inconvenience for the subject and health services. Replacing these intrusive testing methods with a passive in-home monitoring solution would provide a less time-consuming and cheaper alternative. As sensors become more readily available, machine learning models can be applied to the large amount of data they produce. This can support activity recognition, falls detection, prediction and risk determination. In this review, the growing complexity of sensor data, the required analysis, and the machine learning techniques used to determine risk of falling are explored. The current research on using passive monitoring in the home is discussed, while the viability of active monitoring using vision-based and wearable sensors is considered.en
dc.description.sponsorshipThe Data Lab.en
dc.language.isoengen
dc.publisherSpringeren
dc.rightshttps://creativecommons.org/licenses/by/4.0en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPredictionen
dc.subjectSensor dataen
dc.subjectData analyticsen
dc.subjectHealthen
dc.titleFall prediction using behavioural modelling from sensor data in smart homes.en
dc.typeJournal articlesen
dc.publisher.urihttps://doi.org/10.1007/s10462-019-09687-7en
dcterms.dateAccepted2019-02-01en
refterms.accessExceptionNAen
refterms.dateDeposit2019-02-18en
refterms.dateFCA2019-02-18en
refterms.dateFCD2019-02-18en
refterms.dateFreeToDownload2019-02-18en
refterms.dateFreeToRead2019-02-18en
refterms.dateToSearch2019-02-18en
refterms.depositExceptionNAen
refterms.panelBen
refterms.technicalExceptionNAen
refterms.versionAMen
rioxxterms.typeJournal Article/Reviewen
rioxxterms.versionAMen


Files in this item

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0