OpenAIR OpenAIR
 
 

OpenAIR @ RGU >
Design and Technology >
Engineering >
Theses (Engineering) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10059/515
This item has been viewed 20 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Chrystall PhD thesis.pdf4.97 MBAdobe PDFView/Open
Title: Adaptive control of communication networks using learning automata.
Authors: Chrystall, Michael S.
Supervisors: Mars, P.
Issue Date: Mar-1982
Publisher: The Robert Gordon University
Abstract: This research investigates communications network routing procedures, based on distributed learning automata concepts for circuit and packet switched networks. For this application, the learning automaton is shown to be an ideal adaptive control mechanism, with simple feedback and updating strategies which allow extremely practical implementations and perform very close to the desired optimum. In this thesis, the nature of learning automata routing schemes are explored by analytical and computer simulation techniques, primarily developing an elementary understanding of the automata routing and adaption process. Using simple circuit and message switched networks the conditions for minimum blocking probability and average delay are established and compared with the equilibrium behaviour of learning automata operating under alternative reinforcement algorithms. Later, large scale simulations of real networks are used to demonstrate and relate the learning automata scheme to existing routing techniques. These experiments, which are performed on sophisticated simulation packages produced for this study, take as examples hierarchical and general structured telephone networks and packet switched communications networks configured with both virtual call and datagram protocols. In addition, studies under failure mode conditions, including link, node and focussed overloads, conclusively demonstrate the superior performance afforded by the learning automata routing approach.
Appears in Collections:Theses (Engineering)

All items in OpenAIR are protected by copyright, with all rights reserved.

 

 
   Disclaimer | Freedom of Information | Privacy Statement |Copyright ©2012 Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland, UK: a Scottish charity, registration No. SCO13781